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We consider the analytic structure of interfaces in several families of steady and
unsteady two-dimensional Stokes flows, focusing on the formation of corners and
cusps. Previous experimental and theoretical studies have suggested that, without
surface tension, the interfaces spontaneously develop such singular points. We
investigate whether and how corners and cusps actually develop in a time-dependent
flow, and assess the stability of stationary cusped shapes predicted by previous authors.
The motion of the interfaces is computed with high resolution using a boundary
integral method for three families of flows. In the case of a bubble that is subjected to
the family of straining flows devised by Antanovskii, we find that a stationary cusped
shape is not likely to occur as the asymptotic limit of a transient deformation. Instead,
the pointed ends of the bubble disintegrate in a process that is reminiscent of tip
streaming. In the case of the flow due to an array of point-source dipoles immersed
beneath a free surface, which is the periodic version of a flow proposed by Jeong &
Moffatt, we find evidence that a cusped shape indeed arises as the result of a transient
deformation. In the third part of the numerical study, we show that, under certain
conditions, the free surface of a liquid film that is levelling under the action of gravity
on a horizontal or slightly inclined surface develops an evolving corner or cusp. In
certain cases, the film engulfs a small air bubble of ambient fluid to obtain a composite
shape. The structure of a corner or a cusp in an unsteady flow does not have a unique
shape, as it does at steady state. In all cases, a small amount of surface tension is able
to prevent the formation of a singularity, but replacing the inviscid gas with a viscous
liquid does not have a smoothing effect. The ability of the thin-film lubrication
equation to produce mathematical singularities at the free surface of a levelling film is
also discussed.

1. Introduction

There is a sufficient amount of experimental and theoretical evidence to suggest that,
under certain conditions, the free surface of a liquid and the interface between two
fluids may develop regions of high curvature, which have been described as apparent
corners and cusps. In the theoretical limit where the surface tension vanishes, these
regions become true corners and cusps both of which have infinite curvature and an
associated discontinuity in the tangential plane. Several classes of Stokes flows where
corner and cusp formation is either known or alleged to occur include the following.

(a) Flow past a two-dimensional or an axisymmetric bubble placed in an extensional
or shear flow (e.g. Richardson 1968, 1973; Buckmaster 1972; Antanovskii 1994b, c).
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The cusp on the free surface of a two-dimensional bubble immersed in an orthogonal
stagnation-point flow is illustrated in figure 1(a).

(b) Flow inside a two-dimensional drop that is suspended in a gas and is shrinking
under the action of a point sink located in its interior (Howison & Richardson 1995) ;
and the complementary flow in the exterior of a bubble (Tanveer & Vasconelos 1994,
1995; Nie & Tanveer 1996). The cusp on the free surface of a shrinking drop is
illustrated in figure 1(b).

(c) Flow near the meniscus of a liquid between two counter-rotating cylinders, and
flow near the meniscus of a film plunging into a pool (Joseph et al. 1991; Jeong &
Moffatt 1992; Joseph 1992). The first type of flow is depicted in figure 1(c).

(d ) Flow near the free surface of a liquid whose motion is due to a point vortex or
a point-vortex dipole immersed beneath the free surface (Joseph et al. 1991; Jeong
& Moffatt 1992; Joseph 1992; Antanovskii 1994a). The periodic version of this flow
is illustrated in figure 1(d ).

(e) Flow due to the levelling of a liquid film on a horizontal surface, and flow of a
deformed film down an inclined plane, depicted in figure 1(e, f ). The formation of an
interfacial singularity will be discussed in §5.

A common feature of the aforementioned flows is the presence of a stagnation point
precisely on, or near the free surface. The sharp curvature of the streamlines in the
vicinity of the stagnation point seems to be a prerequisite for singularity formation.
There are other types of interfacial singularities associated with pinching of layers or
columns of fluid, accompanied by topological changes in geometry of an interface, but
these will not concern us in this study (Tanveer & Vasconelos 1994; Nie & Tanveer
1996).

The majority of previous theoretical and computational studies on the structure of
interfacial corners and cusps have considered steady flows. One can make an important
distinction between (a) two-dimensional and (b) three-dimensional or axisymmetric
flow. In the first case, the velocity at the location of a corner or cusp with non-zero
surface tension takes an infinite value, whereas in the second case it is finite
(Richardson 1968). Corners and cusps in two-dimensional flow are thus expected to
occur only in the theoretical limit of vanishing surface tension. This rather strong
requirement appears to diminish the significance of, and has been an impediment for,
theoretical investigations. But describing the way in which a singularity is formed as
the surface tension is diminished has proven to be both an illuminating and fruitful
approach. Jeong & Moffatt (1992), in particular, explicitly demonstrated that a two-
dimensional free surface with a cusped shape is mathematically consistent and
physically acceptable in the context of Stokes flow and probably Navier–Stokes flow.
The existence of a stationary cusped shape, however, does not guarantee its
spontaneous formation in an unsteady flow; the issue of stability is yet to be addressed.

In recent years, several authors have developed semi-analytical and numerical
methods for computing the evolution of two-dimensional and axisymmetric bubbles
and drops leading to cusped shapes. Their work is based on complex-variable
formulations and boundary-integral methods for Stokes flow. Antanovskii (1994b, c)
described the evolution of a two-dimensional bubble suspended in an incident
extensional flow; Tanveer & Vasconelos (1994, 1995) and Nie & Tanveer (1996)
considered flows exterior to a shrinking two-dimensional or axisymmetric bubble ;
Howison & Richardson (1995) considered the complementary problem of flow inside
a two-dimensional shrinking drop. The last authors cleverly argue that, without surface
tension, the spontaneous occurrence of a singularity along the free surface of a
shrinking drop with an arbitrary initial shape is a consequence of the reversibility of
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F 1. Schematic illustration of six types of Stokes flows involving free surfaces and fluid with
corners and cusps. (a) Flow past a two-dimensional bubble placed in an extensional flow; (b) flow
inside of a two-dimensional drop that is suspended in a gas and is shrinking under the action of a
point sink located in its interior ; (c) flow near the meniscus of a liquid between two counter-rotating
rollers ; (d ) flow near the free surface of a liquid whose motion is due to a periodic array of immersed
point vortices or point-vortex dipoles ; (e) flow due to the levelling of a liquid film on a horizontal
surface ; ( f ) flow of a deformed film down an inclined plane.

Stokes flow. If the whole of the fluid were drained through the point sink, reversing the
flow at the late stages of drainage would produce a drop with a circular shape.

There have been three additional numerical investigations of unsteady flows leading
to formation of cusps. Joseph et al. (1991) used a numerical software package based
on a finite-element method to compute the evolution of the free surface of a liquid
placed within a rectangular computational box, with a specified inlet and outlet. The
streamline pattern of this model flow includes a stagnation point at the undeformed
free surface, which causes a symmetric depression. In the absence of surface tension,
the computations became unstable after a finite time of evolution; at that point, the
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free surface had already developed a region of high curvature. The breakdown of the
numerical method was regarded as evidence of cusp formation. When the surface
tension was set to a non-zero value, the free surface was seen to obtain a smooth steady
shape. Joseph (1992) discussed the results of an unpublished report by Palmquist &
Kistler on the flow due to the plunging of a liquid film into a pool, conducted using a
finite-element method. Cusp formation was established by extrapolating results for
finite but small surface tension. Finally, Koplik & Banavar (1994) carried out
molecular dynamics simulations of the flow between two counter-rotating rollers.
Their results cast a shadow of doubt on the physical relevance of cusp formation
predicted in the context of continuum mechanics, but an alternative explanation for
these discrepancies will emerge from our discussion.

The numerical results of all the aforementioned authors confirm that a cusp may
indeed form in a spontaneous manner in an unsteady flow. But, mainly due to
difficulties with the accuracy of the numerical methods, the actual process of singularity
formation and the shape of computed evolving cusps have not been described in
satisfactory detail. Joseph (1992) convincingly argued that the geometry of a steady
cusp must be describable by a certain power law, and his theory is in agreement with
the exact solution of Jeong & Moffatt (1992). On the other hand, Howison &
Richardson (1995) perceptively pointed out that reversibility of Stokes flow allows an
evolving corner or cusp to take any arbitrary shape. The relation between the cusps
developing in an unsteady flow and the stationary cusps analysed by Richardson,
Jeong & Moffatt, and Joseph for steady flow is not clear. Finally, to this author’s
knowledge, the formation of a corner in either a steady or an unsteady two-
dimensional Stokes flow has not been reported, although its existence has been
discussed.

In this paper, we report the results of numerical computations on four families of
interfacial flows leading to the formation of corners and cusps. In §3, we study the
evolution of a bubble in a straining flow invented by Antanovskii (1994c), illustrated
in figure 1(a), and in §4, we consider the periodic version of the Jeong–Moffatt flow,
depicted in figure 1(d ). In both cases, previous solutions of the steady flow problem
without surface tension have suggested the spontaneous formation of cusps. We
investigate whether and how these cusps actually form during an unsteady deformation
beginning with different initial shapes.

In §5, we study the levelling of a non-planar liquid film evolving on a horizontal or
inclined surface, shown in figure 1(e, f ), and observe the spontaneous occurrence of
corners and cusps. This flow has been considered both theoretically and numerically on
many previous occasions but, surprisingly, it has not been identified as a host of
singularity formation. When the film thickness is sufficiently small compared to the
wavelength of the perturbation, the evolution of the film thickness is described by the
equations of lubrication flow. We show that this simplified description cannot capture
the precise process of singularity formation, although it may produce other types of
singular behaviour.

We conclude in §6 by summarizing the results and drawing attention to the
analogous problem of interfacial singularity formation in the Hele–Shaw cell.

2. Mathematical formulation and numerical method

The investigations are based on numerical solutions of the equations of Stokes flow
using boundary-integral methods. The development of the integral representation is
straightforward (e.g. Pozrikidis 1992), and we confine this discussion to presenting the
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final integral equations and outlining the numerical procedure for the four classes of
flows illustrated in figure 1(a, d–f ).

For all flows, we trace the interface – and for periodic flow one period of it – with
a set of marker points that move either with the velocity of the fluid, or with the
component of the velocity of the fluid that is normal to the interface, and advance the
position of the points using the first- or second-order Runge–Kutta method. The time
step is either kept constant or adjusted in the course of the computation according to
the minimum radius of curvature of the free surface, as will be discussed in §4; this
provides us with an effective method of capturing singularity formation.

The velocity of the fluid at the free surface is computed by solving a Fredholm
integral equation of the second kind. To improve the accuracy of the results and the
efficiency of the numerical method, we produce the solution by the method of fixed-
point iterations. In certain cases, convergence requires deflating the spectrum of the
double-layer integral of Stokes flow, so as to make its spectral radius less than unity,
as will be described in the following subsections.

2.1. Deformation of a bubble or drop

For flow past a bubble or drop, illustrated in figure 1(a), we compute the interfacial
velocity by solving the integral equation
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where u¢ is the velocity of the incident flow to be given a specific form in §3, n is the
unit normal vector pointing out of the bubble, α¯ 2}(1λ), β¯ (1®λ)}(1λ), and
λ is the ratio of the viscosity of the fluid occupying the bubble to the viscosity of the
ambient liquid µ ; for the inviscid bubble considered in the main part of this study,
λ¯ 0. The quantities G and T are the two-dimensional Stokeslet and its associated
stress tensor, S is the interface, χ is the instantaneous total arclength of the interface,
and PV designates the principal value of the double-layer integral.

In this problem, we neglect the effects of gravity and set the discontinuity in the
interfacial traction ∆f equal to γκn, where γ is the surface tension, and κ is the
curvature of the interface in the (x, y)-plane. Since the free surface is in dynamic
equilibrium, the total force exerted by the bubble on the ambient fluid is equal to zero,
and the disturbance flow decays far from the interface preventing the well-known
divergent behaviour of unbounded two-dimensional Stokes flow.

It is worth noting, parenthetically, that the non-symmetric version of the flow
depicted in figure 1(b), without the symmetries with respect to the x- and y-axes, would
seemingly require the presence of a point force and a rotlet at the position of the point
source in order to balance the force and the torque exerted by the interface on the
liquid (Howison & Richardson 1995). But since the free surface is in equilibrium, the
total force exerted on it by surface tension vanishes and a point force is not required.
The presence of a rotlet, however, seems to be imperative.

In the numerical implementation, we consider an incident flow that is symmetric
with respect to the x- and y-axes, and require a corresponding symmetry for the free
surface. Accordingly, we compute the velocity over one quarter of the interface, and
set the velocity over the remainder by reflection. This practice effectively eliminates the
eigenfunctions of the double-layer potential expressing rigid-body motion. The last
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term in equation (2.1) deflates the spectrum of the double-layer operator be removing
its marginal eigenvalue, and thus allows an iterative solution. In practice, only a few
iterations are necessary in order to obtain a solution that is accurate to the fifth decimal
place.

2.2. Deformation of an interface due to a periodic array of point-source dipoles

Next, we consider a semi-infinite pool of a liquid whose interface deforms under the
action of a periodic array of point-source dipoles pointing along the y-axis, each of
strength δ, as shown in figure 1(d ). The singularities are immersed beneath the interface
at a distance b, and are separated by the distance L. Note that a point-source dipole
pointing along the y-axis may also be interpreted as a point-vortex dipole pointing
along the x-axis.

To facilitate the mathematical formulation, we decompose the velocity u into the
velocity due to the point-source dipoles u¢, and a disturbance velocity uD. The
disturbance velocity at the interface is computed by solving the integral equation
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where f¢ is the traction at the interface corresponding to the unperturbed flow due to
the singularities, λ is the ratio of the viscosities of the upper and lower fluid, and G "P,
T "P are the singly periodic Stokeslet and its associated stress tensor derived in closed
form by Pozrikidis (1992). The effects of gravity are neglected by setting the
discontinuity in the interfacial traction ∆f equal to γκn. The rest of the symbols were
defined in the preceding subsection. For the liquid pool underneath an inviscid gas
considered in the main part of our numerical study, λ¯ 0. A closed-form expression
for the velocity of the incident u¢ can be found in standard texts of fluid mechanics
(e.g. Pozrikidis 1997a).

It is worth noting again that, because the total force and torque exerted on one
period of the interface by the traction field ∆f vanishes, the presence of point forces or
rotlets at the location of the point-source dipoles is not required.

2.3. Integral equation for the le�elling of a horizontal film

In the third case study, we consider the levelling of a periodic liquid film with viscosity
µ lying on a horizontal surface, underneath another viscous fluid with viscosity λµ, as
illustrated in figure 1(e). The velocity at the free surface is obtained by solving the
integral equation
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where ∆f¯ (γκ∆ρg(y®H ))n,∆ρ is the difference of the densities of the film and
overlying fluid, g is the magnitude of the acceleration due to gravity, y¯H describes
the location of the free surface of the flat film. The kernels G "PW and T "PW are the
singly periodic Green’s function and its associated stress tensor for flow due to a
periodic array of point forces in the presence of a flat wall (Pozrikidis 1992). The rest
of the symbols were defined in the preceding subsections.
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2.4. Integral equation for the e�olution of an inclined film

To develop the boundary-integral formulation for the flow of the inclined film depicted
in figure 1( f ), we decompose the velocity u into the sum of the unperturbed velocity
u¢ corresponding to the flat-film solution, and a disturbance velocity uD ; for the
horizontal film discussed in the preceding subsection, u¢ ¯0. The disturbance velocity
at the interface is computed by solving the integral equation
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The quantity f¢ is the traction at the interface corresponding to the flow u¢, with
components
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where ∆ρ is the density difference between the film liquid and the overlying fluid,
y¯H describes the free surface of the flat film, g is the gravitational acceleration vector,
and n is the unit normal vector pointing into the film. Finally, the discontinuity in the
interfacial traction is given by ∆f¯γκn.

2.5. Adapti�e point redistribution

An important component of the numerical method is an adaptive point redistribution
algorithm that allows us to describe the fine features of the evolving interface. After
each time step, we examine the distribution of the marker points, and compute (a) the
angle that is subtended by each circular arc that passes through successive triplets of
marker points, and (b) the separation between two successive points. If the angle is too
large, we replace the middle point with two evenly spaced points ; if the separation is
too large, we introduce a point in the middle; and if the separation is too small, we
replace the two successive points by a point in the middle. The last operation is possible
only if the resulting point distribution does not violate the first two criteria.
Appropriate modifications are made for the points that lie in the neighbourhood of a
plane of symmetry, such as the y¯ 0 or x¯ 0 plane in figure 1(a), so that the point
distribution respects the symmetry of the flow at all times.

2.6. Numerical implementation and performance

In the numerical procedure, we approximate the interface with the union of circular
arcs that are subtended between successive triplets of marker points. The radius of
curvature at each point is approximated by the radius of the arc, with a negative sign
when the marker points rotate in the clockwise direction along an arc. Cubic-spline
interpolation was implemented but did not have a significant enough effect on the
accuracy of the results to justify the additional expense.

The discontinuity in the interfacial traction ∆f and interfacial velocity were assumed
to vary in a linear manner with respect to arclength over each arc. To compute the
single-layer integral, we subtract the logarithmic singularity of the integrand, and
integrate it analytically over each arc. The double-layer integral of two-dimensional
Stokes flow is non-singular when it is integrated over an element with a smooth shape,
and does not require a special treatment. The non-singular integrals are computed
using six-point Gauss–Legendre quadrature. Picard iterations are carried out based on
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a projection matrix that is constructed using a finite-difference method. The iteration
time was a small fraction of the time necessary to compute the single-layer potential or
for constructing the projection matrix.

All computations were performed on a Sun Sparcstation 20, with a minimum of 64
points along the interface. The maximum  time for a complete run was less than
two hours. The area of a bubble, drop, or liquid layer was preserved with an error that
is less than 0.01% up to the completion of each computation.

3. Bubble deformation in a straining flow

Richardson (1968, 1973) developed an elegant method for computing the steady
shape of a two-dimensional inviscid bubble immersed in a purely straining flow, a
simple shear flow, and a parabolic flow; in the third case the bubble may be placed at
an off-centre position. His method was based on a complex-variables formulation of
Stokes flow. In the first two cases of purely straining and simple shear flow, he found
that there is a critical value of the capillary number Ca¯ 2µGa}γ above which a steady
shape cannot be established, and the bubble continues to elongate ; G is the shear rate
or rate of elongation of the incident flow, and a is the equivalent bubble radius. At sub-
critical values of the capillary number, the bubble assumes a perfectly elliptical shape.

The behaviour of a two-dimensional bubble in a purely straining flow is in sharp
contrast to the corresponding behaviour of an axisymmetric bubble in an extensional
uniaxial flow. The latter retains a compact shape at all values of the capillary number,
and it is apparently able to do so by developing pointed ends with large curvature. In
the theoretical limit where the surface tension vanishes, the pointed ends obtain conical
shapes. Unfortunately, it has not been possible to describe the precise structure of the
flow in the vicinity of these singular points (Buckmaster 1972).

The intriguing differences in the behaviour of axisymmetric and two-dimensional
bubbles in straining flow motivated Antanovskii (1994b, c) to study the deformation
of a two-dimensional bubble in a general class of incident straining flows. In the first
part of his study, Antanovskii used the complex-variable formulation to study the
transient deformation of a bubble in various types of irrotational incident flows,
including flows whose complex potential is an integral power of the complex variable
z. When the value of the exponent is equal to 2, the incident flow reduces to the purely
extensional flow studied earlier by Richardson (1968). Antanovskii (1994b) computed
evolutions from the circular shape at finite values of the capillary number, and found
that, in all cases, the bubble deforms and obtains a nearly cusped shape. Numerical
inaccuracies prevented him from analysing the behaviour at long times for zero surface
tension where a true cusp allegedly forms.

More relevant to this discussion is the second part of Antanovskii’s (1994c) work on
the steady shape of a bubble immersed in a purely straining orthogonal stagnation-
point flow. An important new feature is that the incident flow also has a small
rotational component. With the centre of the bubble placed at the origin, the velocity
field of the incident flow is given by
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where G is the rate of extension, a is the bubble equivalent radius, and c
"
, c

#
, are two
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F 2. The dependence of the bubble deformation parameter D¯ (A®B)}(AB), where A and
B are the half-lengths of the bubble along the x- or the y-axis as shown in figure 1(a), on the capillary
number. The solid line was drawn from Richardson’s analytical solution for an orthogonal
stagnation-point flow corresponding to c

"
¯ 0, c

#
¯ 0, and the  correspond to the present numerical

results. The dashed line tracing the data plotted with ¬ shows numerical results for a flow with
c
"
¯ 0, c

#
¯ 0.05.

dimensionless parameters ; setting c
"
¯ 0 and c

#
¯ 0 yields irrotational orthogonal

stagnation-point flow.
Antanovskii (1994c) computed families of steady bubble shapes for various

combinations of c
"
and c

#
, and found that, at sufficiently large positive values of either

one of these parameters, steady bubble shapes exist for all values of the capillary
number. When this occurs, as the capillary number is increased the bubbles tend to
develop pointed ends with cusped shapes. This behaviour is similar to that of
axisymmetric bubbles placed in a purely elongational flow studied by Buckmaster
(1972). An important difference is that the axisymmetric bubbles develop conical
instead of cusped ends.

3.1. Results and discussion

We want to investigate the process of cusp formation during the transient phase where
a bubble starts deforming from a specified initial shape.

Our numerical results for c
"
¯ 0 and c

#
¯ 0 are in excellent agreement with the

analytical results of Richardson (1973) ; and this confirms the reliability of the
numerical method. In figure 2 we illustrate the dependence of the bubble deformation
parameter D on the capillary number, where D¯ (A®B)}(AB), and A, B are the
half-lengths of the bubble along the x- or y-axis, as shown in figure 1(a). The solid line
in figure 2 was drawn using Richardson’s analytical solution, and the plusses represent
numerical results obtained with 32–60 points around a quarter of the interface. The
asymptotic value of the deformation parameter was computed using the method of
Aitken extrapolation (e.g. Pozrikidis 1997b), which is based on the verifiable
assumption that the interface approaches its asymptotic value at an exponential rate.

The numerical results show that there is a critical value of Ca above which the bubble
continues to elongate and does not reach a steady shape, in excellent agreement with
Richardson’s predictions that place the critical value at 0.609. For each sub-critical
value of the capillary number, there are two steady bubble shapes ; the one
corresponding to the large deformation is unstable and cannot be realized. The steady
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F 3. (a) The shape of a stationary bubble, and (b) the evolving shape of a bubble in an
orthogonal stagnation-point irrotational flow, corresponding to c

"
¯ 0, c

#
¯ 0, for Ca¯ 0.6 and

¢. (c) The shape of a stationary bubble, and (d–f ) the evolving shape of a bubble in a flow with
c
"
¯ 0, c

#
¯ 0.05, for Ca¯ 0.6 and ¢. (g) The evolving shape of a circular bubble in a flow with

c
"
¯ 0.05, c

#
¯ 0, for Ca¯¢.

shape of a bubble for Ca¯ 0.6, and the continued deformation of a bubble with
vanishing interfacial tension corresponding to Ca¯¢, both for c

"
¯ 0 and c

#
¯ 0, are

shown, respectively, in figure 3(a, b).
To investigate the effect of the rotational component of the incident flow, we

consider, as a case study, a flow with c
"
¯ 0 and c

#
¯ 0.05. Antanovskii (1994c) found

that steady bubble shapes exist at all values of the capillary number. As the surface
tension is decreased, the bubble elongates and tends to develop pointed ends which
eventually assume cusped shapes. The curvature of the interface at the tip increases in
an exponential manner with respect to the capillary number.
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Our numerical results at small and moderate values of the capillary number are in
excellent agreement with Antanovskii’s predictions. In figure 2 we plot, with a dashed
line tracing the numerical data indicated by the symbol ¬, the asymptotic deformation
D computed using the method of Aitken extrapolation, and obtain excellent agreement
with Antanovskii’s (1994c) results read from the graph in his figure 7. The D–Ca curve
rises and then tends to become horizontal yielding stationary shapes for any finite value
of Ca.

The steady shape of a bubble with Ca¯ 0.6, c
"
¯ 0 and c

#
¯ 0.05 is shown in figure

3(c). The contrast with the shape shown in figure 3(a) corresponding to an irrotational
straining flow, is evident. The radius of curvature of the bubble at the pointed ends has
a very small value, and this appears to corroborate Antanovskii’s predictions that a
cusped shape will form in the absence of interfacial tension. It may appear from figure
3(c) that a corner instead of a cusp is likely to form at infinite capillary number, but
profiles plotted by Antanovskii show that the interior angle actually decreases to zero
to yield a cusp.

To investigate the process of cusp formation, we computed the transient deformation
of a bubble with vanishing surface tension, starting from several different initial shapes.
Results of three such computations are shown in figure 3(d–f ). In figure 3(d ), the initial
bubble shape is a circle ; in figure 3(e), the initial shape is an ellipse with aspect ratio
equal to 8, which corresponds to a deformation parameter that is close to that
predicted by Antanovskii (1994c) for a cusped bubble ; and in figure 3( f ), the initial
shape is the steady shape for a finite value of the capillary number. In all cases, and in
others computed but not shown, the bubble behaves in a similar manner : It elongates
along the x-axis, and it develops a dimple near the tip in a process that can be described
as tip streaming. The upper and lower parts of the interface cross soon after the last
stage shown in figure 3( f ), indicating bubble breakup in the manner described by
Tanveer & Vasconelos (1994, 1995) for a shrinking bubble.

Additional insights into the transient motion of a bubble can be obtained by
considering the evolution of the curvature of the interface at the tip, shown in figure
4. In these series of computations, the initial shape of a bubble at a particular value of
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the capillary number was taken to be the steady shape at a somewhat smaller value.
The asymptotic approach to a steady value is evident in all cases except when Ca¯¢
corresponding to figure 3( f ). In this case, the curvature at the tip decreases with time,
reflecting the process of tip streaming.

Similar results were obtained for other values of c
"
and c

#
considered by Antanovskii

(1994c). For example, figure 3(g) illustrates the evolution of a bubble from a circular
shape in a flow with c

"
¯ 0.05 and c

#
¯ 0, in the absence of surface tension.

Antanovskii’s computations predict a stationary bubble with a cusped shape; we find
that the bubble exhibits continued elongation, suggesting that the cusped configuration
is either unstable or can be reached only from a narrow window.

4. Deformation of a free surface in the periodic Jeong–Moffatt flow

Jeong & Moffatt (1992) studied the deformation of the free surface of a semi-infinite
pool of a liquid, due to an immersed two-dimensional point-source or point-vortex
dipole. The periodic version of this flow is illustrated in figure 1(d ). Remarkably, these
authors were able to find an exact solution for steady flow, and describe the shape of
the deformed free surface in closed analytical form. Their results demonstrated that the
maximum curvature of the free surface, occurring at the point of maximum depression,
is an exponentially increasing function of the capillary number.

Jeong & Moffatt found that, when the surface tension vanishes, the free surface
develops a cusp that is described by the form x®x

c
¯ c(y®y

c
)$/#, where x

c
is the

position of the cusp, the x-axis is perpendicular to the plane of symmetry, and c is a
constant, in agreement with the earlier predictions of Joseph et al. (1991). The flow near
the cusp was discussed further by Joseph (1992). Antanovskii (1994a) extended the
formulation of Jeong & Moffatt to include the effects of a surfactant, but an exact
solution could no longer be obtained.

Our objective is to investigate the process of cusp formation during the transient
phase, as the free surface starts deforming from a specified initial shape. To facilitate
the numerical solution, we extend the flow of Jeong & Moffatt to its periodic version,
as discussed in §2. Jeong & Moffatt showed that gravity plays a secondary role in the
structure of the flow near the trough of the free surface ; accordingly, we neglect it in
our formulation.

The transient motion and asymptotic shape of the free surface is a function of
capillary number Ca¯µδ}b#γ, where δ is the strength of the dipoles, and the rest of
the variables were defined in §2 or figure 1(d ). Jeong & Moffatt used the alternative
capillary number #¯µα}d #γ, where α¯ δ}(2π), d¯ by

Max
, and y

Max
is the

maximum elevation of the free surface. The two capillary numbers are related by #¯
Cab#}(2πd #).

When the capillary number vanishes, the free surface is flat ; when it has a finite
value, the free surface dips down above the singularities and settles to a steady shape.
Steady free-surface shapes for Ca¯ 0.5 and 1 are shown in figure 5(a), for L}b¯ 4. In
both cases, the free surface has a nearly flat initial shape with a small sinusoidal
undulation. The corresponding evolutions of the maximum curvature of the free
surface, occurring at the trough, are illustrated on a linear-log scale in figure 5(b). For
Ca¯ 0.25, 0.50, 2}3, and 1.0, the curvature tends to a constant value that spans nearly
two orders of magnitude. This behaviour is consistent with the exponential dependence
of the maximum curvature on Ca demonstrated by Jeong & Moffatt and physically
explained by Hinch in an Appendix to their paper. Unfortunately, the accuracy of our
numerical results near the steady state severely worsens as the capillary number is
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F 5. (a) Steady free-surface shapes in the periodic Jeong–Moffatt flow with L}b¯ 4, for
Ca¯ 0, 0.5, 1.0, ¢. (b) Evolution of the free-surface curvature at the trough, κ, for several values
of Ca.

raised, and this prevented us from examining the precise relationship between the
maximum curvature and the capillary number in more detail.

When the surface tension vanishes and capillary number becomes infinite, the
numerical results show that the curvature at the trough increases without limit, and
tends to become infinite at a finite time, yielding a cusp. Figure 6(a) shows the detailed
shape of the evolving free surface near the trough, at a sequence of time instants near
the critical time where a cusp is about to form. In the numerical method, in order to
capture the process of cusp formation, we adjust the time step in an adaptive manner.
After extensive experimentation with different methods – including the implementation
of a Runge–Kutta–Fehlberg 23 method with several error estimators – best results
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were obtained when the adjustment was such that the curvature at the trough increases
by a preset amount over each time step. The maximum increment was set equal to 2}b
or 5}b. When the time step is kept constant during the integration, the interface crosses
itself, causing the numerical method to break down at a finite time. Taking into
consideration that maintaining the time step constant did not cause any such
difficulties in the problem of bubble deformation discussed in the preceding section, we
regard this failure as evidence of cusp formation.

For the particular conditions corresponding to figure 6(a), the free surface evolves
from a flat initial shape. Selecting different initial shapes, including the steady shape at
a finite but large value of the capillary number, has an observable effect on the gross
shape of the free surface at the time of cusp formation, but a small effect on the shape
of the free surface near the cusp. It seems that a nearly steady cusp forms at a finite
time, and the rest of the free surface then adjusts so as to conform with the steady
shape. The importance of the geometry of the cusp to the overall shape of the interface
is discussed by Jeong & Moffatt (1992).

To illustrate the structure of the free surface near the cusp, in figure 6(b) we plot y®y
c

versus x®x
c
, where (x

c
, y

c
) are the coordinates of the cusp, on a log–log scale. For flow

due to a single point-source dipole, corresponding to L}d¯¢, Jeong & Moffatt (1992)
found y

c
}d¯®2}3; our numerical results show that for L}b¯ 4.0, the cusp is located

at about y
c
}b¯®0.66. Close to the trough, and away from the undeveloped rounded

part of it, the profiles in figure 6(b) tend to become linear with a slope that is close to
the value 2}3 predicted by Joseph and confirmed by Jeong & Moffatt. This agreement
provides additional evidence that a stationary cusp is about to form. Overall, we may
state with confidence that a steady cusp with the expected structure indeed forms, and
tip streaming does not occur.

Koplik & Banavar (1994) carried out molecular dynamics simulations of the flow
due to the counter-rotation of two cylinders in the presence of an interface separating
two liquids with the same viscosity, as illustrated in figure 1(c). Their results showed
that a cusp does not form but, instead, a drop of the upper fluid is entrained into the
lower fluid, mid-way between the rollers, in a process that is reminiscent of tip
streaming. In view of our results in §3, this behaviour is not surprising: whether a cusp
forms or tip streaming occurs depends upon the precise structure of the incident flow
that deforms the interface. More will be said about this dichotomy in the concluding
section.

To examine the possibility that the viscosity of the upper fluid plays a decisive role
in suppressing the formation of a cusp, we replaced the gas above the free surface in
figure 1(d ) with a liquid whose viscosity is equal to that of the lower fluid,
corresponding to viscosity ratio λ¯ 1. The evolution of the interface near the trough
is illustrated in figure 6(c). A cusp that is even sharper than the one developing on a
free surface is seen to form. Similar results were obtained for higher values of l.

Lastly, we turn to examining the effect of the point-source dipole separation L}b on
the free-surface shape, with the objective of further comparing the numerical results
with the analytical solution of Jeong & Moffatt corresponding to L}b¯¢. Our
computations show that, for a certain value of Ca, the deflection and maximum
curvature of the free surface at the trough at steady state are monotonically increasing
functions of the ratio L}b. This is expected, since the unperturbed velocity field due

F 6. (a) Evolution of the free surface near the cusp in the periodic Jeong–Moffatt flow with
L}b¯ 4, for Ca¯¢. (b) The shape of the free surface near the cusp is described by the functional form
x®x

c
¯ c(y®y

c
)$/# discovered by Joseph et al. (1991). (c) Evolution of the interface between two

liquids with same viscosities, λ¯ 1, in the periodic Jeong–Moffatt flow with L}b¯ 4, for Ca¯¢.
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(a)

(b)

(c)

(d)

F 7. Stages in the evolution of a film resting on a horizontal wall, without surface tension,
L}H¯ 2, and disturbance amplitude (a) a}H¯ 0.20, (b) 0.40, (c) 0.80, (d ) 0.95.

to the singularities at the location of the free surface decays exponentially with b}L.
For example, when Ca¯ 0.452, we find that κb increases from 1.0 at L}b¯ 4 to 2.1 at
L}b¯ 8, where κ is the maximum curvature. In the second case, the corresponding
capillary number of Jeong & Moffatt has the value #¯ 0.064; using their figure 3 and
their equation (3.5) we find κb¯ 2.2 which is in good agreement with our numerical
value for L}b¯ 8.

5. Levelling of a liquid film on a horizontal surface

The gravity- and surface-tension-driven levelling of a disturbed liquid film resting on
a flat surface has been studied on many occasions, dating back to the linear analyses
of Wehausen & Laitone (1960) and Orchard (1962). Further contributions include, but
are not limited, to the experimental observations and numerical simulations of Degani
& Gutfinger (1974, 1976), and the finite-element computations of Malamataris &
Papanastasiou (1991), whose work will be discussed later in this section. Two central
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F 8. Close-up of the free surface near the critical time where a corner or a cusp forms, for
vanishing surface tension, L}H¯ 2, and (a) a}H¯ 0.40, (b) 0.80, (c) 0.95.

objectives have been to (a) estimate the rate of levelling of a perturbed free surface, and
(b) establish its dependence on the properties of the fluids.

In our numerical studies, we compute the evolution of a film with mean thickness H
and density ρ, subject to a sinusoidal initial perturbation of wavelength L and
amplitude a. An advanced stage in the evolution of the film with a large-amplitude
perturbation is illustrated schematically in figure 1(e).

First, we discuss the motion in the absence of surface tension. When the amplitude
is sufficiently small compared to the mean film thickness, we find that the interface
levels, maintaining its sinusoidal shape. For a}H¯ 0.01, the rate of decay computed
using our numerical method agrees with the linear predictions of Wehausen & Laitone
and Orchard to the third significant figure. When a}H has a higher value, the deep part
of the interface levels faster than the shallow part, but the interface still maintains a
smooth shape, as illustrated in figure 7(a) for a}H¯ 0.30. Similar observations were
made by previous authors. This asymmetry of the free-surface profile is attributed to
the reduced magnitude of the velocity near the wall.

At larger values a}H, we find a previously unreported behaviour: in the course of
levelling, the free surface develops a region of high curvature at the point of maximum
depression, as illustrated in figure 7(b, c) for a}H¯ 0.40, 0.80. Details of the free-
surface profile near the trough are illustrated in figure 8(a, b). Evidence that a
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F 9. Evolution of the curvature at the trough for vanishing surface tension, L}H¯ 2, and
several values of the amplitude of the initial perturbation. The continued increase of the curvature
indicates the spontaneous formation of an interfacial corner or cusp.

singularity actually forms at a finite time is provided by figure 9, where we plot the
curvature at the trough as a function of time on a linear–log scale. Figure 8(a) reveals
the formation of a corner, whereas figure 8(b) suggests the formation of a cusp.
Unfortunately, an analytical method of predicting the shape of the free surface close
to the singular points could not be devised, but it is certain that it is a strong function
of the current and previous structure of the flow.

For an even higher amplitude a}H¯ 0.95, the free surface engulfs a small bubble of
air which is then trapped within the liquid, yielding a composite shape with a cusped
interface supporting a bubble, as illustrated in figure 7(d ) and, in more detail, in figure
8(c). The free surface crosses itself soon after the last stage shown in the last figure, but
this is not alarming: there is nothing to keep the two parts of the free surface on either
side of the plane of symmetry apart, and even replacing the inviscid gas with a slightly
viscous fluid may not prevent coalescence. It is interesting to note that the composite
shape described in these figures looks strikingly similar to the one predicted and plotted
by Jeong & Moffatt (1992) for their model flow discussed in §4. Finally, we note that
the transition from a corner to a cusp to an engulfed bubble is consistent with the
crossing of the curves for a}H¯ 0.80, 0.95 in figure 9.

5.1. Effect of surface tension

As expected, introducing a small amount of surface tension prevents the formation of
corners and cusps: the free surface maintains a smooth shape throughout the
evolution. This is evident in figure 10(a) where we illustrate the levelling of a film with
L}H¯ 2, a}H¯ 0.95, and Bond number Bo¯ ρgH #}γ¯ 1}3. The contrast with the
evolution shown in figure 7(d ), corresponding to the same conditions but with Bo¯¢,
is striking.

Degani & Gutfinger (1976) and Malamataris & Papanastasiou (1991) computed the
levelling of a film under a broad range of conditions. The second authors, in particular,
performed an extensive set of computations using a finite-element method, and
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(a)

(b)

(c)

F 10. Stages in the evolution of a horizontal liquid film with L}H¯ 2, for (a) a}H¯ 0.95,
λ¯ 0, and Bo¯ 1}3; (b) a}H¯ 0.80, Bo¯¢, and λ¯ 0.10; (c) a}H¯ 0.80, Bo¯¢, and λ¯ 1.0.

reported results for values of the ratio a}H as high as 0.99. Surprisingly, neither of
these studies report evidence of cusp formation. Possible explanations for this absence
from the results of Malamataris & Papanastasiou are: a combination of infinite
capillary number and large-amplitude perturbations was not considered (the ratio a}H
in their figure 20 is unspecified) ; inertial effects prevent cusp formation (they carry out
computations at Reynolds number as low as Re¯ 0.0016) ; the 3¬24 finite-element
tesselation used by them has an inadequate resolution.

5.2. Effect of the �iscosity of the upper fluid

Next, we examine whether replacing the inviscid gas above the liquid layer with a
viscous fluid will have an important effect on singularity formation. In figure 10(b, c)
we present the initial and an advanced stage in the evolution of a film with L}H¯ 2
and a}H¯ 0.80. The viscosity of the overlying fluid is, respectively, 0.10 times or equal
to the viscosity of the layer. Contrasting these profiles with those shown in figure 7(c)
illustrates that the viscosity of the upper fluid acts to widen the apparent angle of the
cusp at the trough. Monitoring the evolution of the maximum curvature indicates the
formation of a singularity in all cases.

A new feature is also observed: as the viscosity of the upper fluid is increased, a
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(a)
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(c)
(d)

F 11. Stages in the evolution of a slightly and a substantially inclined film for L}H¯ 2, without
surface tension, for (a) inclination angle θ¯ 0.01π, a}H¯ 0.40; (b) θ¯ 0.25π, a}H¯ 0.40; (b) θ¯
0.01π, a}H¯ 0.80; (b) θ¯ 0.25π, a}H¯ 0.80.

region of high curvature develops at the maximum elevation of the levelling layer, and
there is strong numerical evidence to suggest that a second singularity is likely to form
there. This behaviour, however, should not be surprising: increasing the viscosity ratio
λ reverses the roles of the two fluids.

5.3. Effect of plane tilt

In further numerical investigations, we examined the effect of a slight tilt of the plane
supporting the film, that is, the effect of a gravity-driven cross-flow. At zero surface
tension, we observed the formation of a corner or cusp for sufficiently large disturbance
amplitudes, as shown in figure 11(a, c). The mid-plane of the cusp is now tilted with
respect to the normal vector to the wall, and this suggests that the symmetry of the flow
is not a necessary condition for singularity formation.

For a substantial tilting angle, we obtain the evolutions illustrated in figure 11(b, d ).
Unfortunately, the iterations failed to converge soon after the free-surface wave
overturned, preventing us from assessing whether an interfacial singularity actually
forms. Computations with perturbations of moderate amplitude, however, for example
a}L! 0.20, proceeded without any such difficulties ; and the computed rate of decay
and phase velocity of perturbations with a small amplitude were in excellent agreement
with the predictions of linear theories (e.g. Pozrikidis 1996, Chapter 9). In any case, the
wavy flow of an inclined or vertical film is interesting in its own right. The results
shown in figure 11(b, d ) are believed to be the first showing the overturning of gravity
waves in a flow without inertial force (Chang 1994).
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Additional corroborating evidence for unstable behaviour of a free surface with a
pointed shape is provided by the numerical computations and laboratory observations
of Sherwood (1984). This author observed and modelled the ejection of a liquid column
from the tip of a nearly axisymmetric elongated drop in a four-roll mill apparatus. A
local analysis of the steady counterpart of this flow would have presumably predicted
the formation of a conical or cusped shape.

The numerical results on interfacial deformation in the generalized Jeong–Moffatt
flow presented in §4 suggest that a stable stationary cusped configuration can indeed
form at a finite time. Joseph’s arguments require that both the Antanovskii and the
Jeong–Moffatt steady cusps are described by the functional form x®x

c
¯ c(y®y

c
)$/#,

where x
c
is the location of the cusp, the x-axis is perpendicular to the mid-plane of the

cusp, and the value of the constant c depends upon the global structure of the flow. It
appears then that for certain values of c the flow around the cusp is stable, whereas for
other values it is unstable. The flow between two counter-rotating cylinders studied by
Koplik & Banavar (1994), and the flow around the Antanovskii cusps studied in §3 of
this paper must fall in the second category, although the existence of a cusped solution
in the first type of flow has not been established.

The computations of the levelling of a horizontal or inclined liquid film revealed the
spontaneous formation of unsteady corners and cusps in a seemingly innocuous flow.
Formation of cusps – but not of corners – in unsteady flows was documented by
sqeveral previous authors, as discussed in the Introduction. The levelling of the film
provides us with a model flow where the whole spectrum of singular behaviour is
displayed; it illustrates the continuous transition from a cornered to a cusped
configuration, and the possible entrapment of a bubble with a topological singularity
regarding the shape of the interface.

Perhaps more importantly, the film levelling flow provides us with an example of a
viscous flow that becomes singular at a finite time, in the absence of artificial
boundaries where numerical boundary conditions are imposed, and in the absence of
singular points in the interior and in the exterior of the flow, including infinity. The
significance of the levelling problem for painting and coating technology has been
emphasized in a technical review by Quach (1973), and the present results reveal some
new modes of unwanted behaviour.

Formation of singularities at the free surface of a bubble or drop in the Hele–Shaw
cell has been the subject of extensive theoretical and computational investigations (e.g.
Almgren 1996; Nie & Tian 1996). Howison & Richardson (1995) present a critical
discussion of the similarities and differences between cusp formation in the Hele–Shaw
flow and in two-dimensional Stokes flow, and our numerical results are in line with
their conclusions.
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